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Abstract Fwake

The modified mixing length (MML) turbulence
model was installed in the Proteus Navier-Stokes Gt,...G8

code, then modified to make it applicable to a wider H

range of flows typical of aerospace propulsion appli- k

cations. The modifications are based on experimental l

data for three flat-plate flows having zero, mild p

adverse, and strong adverse pressure gradients. Pt
Three transonic diffuser test cases were run with the Q

new version of the model in order to evaluate its per- R

formance. All results are compared with experimen-

tal data and show improvements over calculations

made using the Baldwin-Lomax turbulence model,

the standard algebraic model in Proteus.
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Nomenclature

van Driest damping constant = 26
local skin friction coefficient

MML parameter; controls mixing length
saturation level

MML parameter; controls curvature of

blending region
Baldwin-Lomax turbulence model constant

= 1.6

Baldwin-Lomax turbulence model constant

--0.3

Baldwin-Lomax turbulence model constant

= 0.25

parameters used in turbulence model

averaging for multiple walls

parameters used in turbulence model

averaging for multiple walls
function in Baldwin-Lomax turbulence

model

Klebanoff intermittency factor

parameter in Baldwin-Lomax turbulence
model
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parameter in Baldwin-Lomax turbulence
model

MMLPG parameters

throat height of Sajben diffuser

coefficient of thermal conductivity

turbulent mixing length
static pressure

total pressure

vector of dependent variables

ratio of exit static pressure to inlet total
pressure for Sajben diffuser

Reynolds number based on x-coordinate
time

velocities

freestream x-velocity

shear velocity
total velocity
difference between maximum and

minimum total velocities

Cartesian coordinates

y coordinate nondimensionalized by shear

length scale

shear length scale
parameter in Baldwin-Lomax turbulence
model

Clauser's equilibrium parameter

5 boundary layer thickness

8_(2) ' displacement thickness_E(4)second - and fourth-order artificial

viscosity coefficients in constant coeffi-
cient model

_t implicit artificial viscosity coefficient
!c yon Karrnan constant = 0.4

_2, r_ constants in nonlinear Coefficient artificial

viscosity model

_. second coefficient of viscosity

_t molecular viscosity

_, rl computational c6ordinate directions

p density



o

¥

'c

pressure gradient scaling parameter in
nonlinear coefficient artificial viscosity model
spectral radius in nonlinear coefficient artifi-
cial viscosity model
shear stress

shear stress at interior grid points
vorticity

Subscripts
cap capping or saturation value
e edge of boundary layer
eft effective

i, j indexes in the x and y directions
inner inner region of boundary layer
max maximum
min minimum

outer outer region of boundary layer
t turbulent
w wall

Superscripts
+ nondimensionalized by the shear length scale

Introduction

The Proteus Navier-Stokes code I was developed

for aerospace propulsion flow applications and solves
the Reynolds-averaged, unsteady, compressible Navier-
Stokes equations in strong conservation-law form. It
uses a fully-coupled alternating direction implicit
solution procedure 2 with generalized first or second
order time differencing, 3 employs implicit boundary
conditions, and linearizes all terms using second order
Taylor series expansions. Two turbulence models are
available in Proteus: The Baldwin-Lomax algebraic
model (BLM) 4 and the Chien k-e model. 5

For engineering applications, algebraic models
offer the most algorithmically simple and computation-
ally efficient approach to turbulence modeling. Though
two-equation models are sometimes thought to be more
accurate at calculating complex flows, they are more
difficult to implement, require initial and boundary
conditions that are often difficult to define, and are

usually more computationally expensive than algebraic
models. The Baldwin-Lomax model (presented in
Appendix A) is the most widely used algebraic model,

even thoughit is known to have difficulties computing
flows with strong adverse pressure gradients and large
separated regions. &14 The modified mixing length
model (MML) was developed specifically to handle the
separation that occurs on airfoils with leading edge ice

accretions, and it produced significantly better results
than BLM for such flows. 6 The success of these calcula-

tions warrants further evaluation and development of
MML,

The objective of this work is to evaluate and then
modify MML to improve its performance for adverse
pressure gradient flows. To accomplish this, MML was
installed in Proteus and first used to calculate zero

pressure gradient flow over a flat plate. It was modified
to more accurately predict the boundary layer growth for
this flow; then the experimental data of Bradshaw 15was
used to make additional modifications for adverse

pressure gradient flows. The resulting model, called
MMLPG, was then validated for three transonic diffuser

test cases. The CRAY Y-MP computer at the NASA
Lewis Research Center was used for all calculations.

The modified mixing length model was devel-
oped by Potapczuk 6 to fill the need for an algebraic

model to calculate turbulent flow with large separated
regions. The particular problem of interest was an airfoil
at angle of attack with and without leading edge ice
accretions. Previous calculations made with BLM

produced nonphysical results; the source of the problem
was the function F0') (defined in Appendix A), which
could have multiple peaks for this flow. This behavior is
shown in figure 1, taken from reference 6. As the
relative magnitudes of the F(y) local maxima change,
Ymaxmay suddenly jump, producing unrealistic disconti-
nuities in the turbulent viscosity. Selection of the global
maxima often results in a gross over-prediction of the
turbulent viscosity. Some authors s' 9 have found that
choosing the outermost peak produces better results,
while others have elected to use the innermost peak. t°

The MML model avoids the need to seek a
maximum of some ad hoc function. In accordance with

Prandtl's mixing length theory, the MML model deter-
mines the mixing length using the wall shear stress and
the normal distance from the wall, with the maximum

mixing length capped at a given value. As a result, it is a
two layer model; the length scale depends on conditions
near the surface and remains constant in the separated
region. This assumption is valid since there is no
substantial enhancement of turbulence in separated

regions. The turbulent viscosity, lit' is given by

li t = pt21col (1)

where p is the density, I is the mixing length and lint is
the vorticity magnitude. Figure 2, taken from reference
16, shows the behavior of the mixing length in a turbu-
lent boundary layer. Several empirical formulas are
available to evaluate the inner region, 16' 17 which



consists of the viscous sublayer and the overlap latter.
The MML model uses the van Driest formulation, 16

given by

I"l/inner - Ify l--e- _'_

where A + = 26 and the value of K, the yon Karman

constant, is 0.4. The quantity y+ is defined as

(2)

+ Y (3)y =--_
y

where y* is the shear length scale

• g
y = _ (4)

• Here, tt is the molecular viscosity and %, is the wall
shear stress. For y+ > 5A + (but still in the "inner"

region), the mixing length is approximated by _y, this is

the original Prandtl theory, and is consistent with the

well-known logarithmic profile. In the outer region of
the boundary layer, the outer mixing length is assumed to

behave according to

_t
louter : constant x y (5)

The MML model uses a blending function to
give a smooth transition between the inner and outer

layers; this is given by

y+ < Cl (6)
y-I- c2

c, "('-/(y) ffi 1¢_22Y _1 1-e -_'g

(7)

/(y) = el , y'l'>C 1
t_c2Y ,

In this formulation, ely* is the distance from the surface

at which i saturates, and C2 controls the curvature of the

blending region. Figure 3 shows a typical MML model

mixing length profile for an attached wall boundary
layer.

Near separated regions, % approaches zero
which causes y and thus the mixing length to become

very large. To avoid this problem, the following local
average was incorporated: 6

Iq = °'11 i-21+0"21xi-al+0"41xil+°'2lxi+d+°'llxi+21(8)

The subscripts in equation (8) refer to grid points in the

streamwise direction _ong the wall.

Calculations for iced airfoil flows made by

Potapczuk with the MML model showed improvements

over BLM calculations for predictions of the separated

region, the maximum lift coefficient and vortex shedding

frequencies. Since the MML model was developed to

solve the specific problem of flow over airfoils, a

comprehensive evaluation of the model for more general

flow fields was not a part of that study. The objective of

the present study is to evaluate the MML model for

general zero pressure gradient and adverse pressure

gradient turbulent boundary layer flows and examine

possible modifications tO improve the performance of the
model.

Evaluation and Modification of MML

Evaluation of MML for Zero Pressure Gradient Flow

The test case of incompressible, zero pressure
gradient, turbulent flow over a flat plate, as shown in

figure 4, was used to evaluate MML. The grid, shown in

figure 5, had 51 points in both the streamwise and

normal directions and had grid points clustered at the

wall to resolve the boundary layer and at the upstream

boundary to resolve the imposed boundary condition. In

addition, it was evaluated to insure grid independence

for zero pressure gradient flow. The reference velocity,

temperature, pressure and length used in Proteus were

33.53 m/s, 288.3 K, 101.3 kPa and 1.98 m, respectively.
At the upstream boundary, the velocity profile, which

was computed using the correlation of Musket, Is was

held fixed. The flow was computed using both MML

and BLM, The MML Constants were chosen as C!---3000
and C2=5, which were found to give good results at

Rex=7xl06. Both turbulence models produced good
agreement with experimental 19velocity-defect profiles,

as shown in figure 6 at Rex--Txl06. The quantity u: in

figure 6 is the shear velocity, given by u_ = ./(ix,,I/p).
At other locations on the plate (i.e., at other Reynolds

numbers) the BLM velocity-defect profiles correctly
exhibit similarity but the MML profiles do not, as shown

in figure 7.

In a turbulent flow over a flat plate, the boundary
layer thickness increases with increasing x-distance

along the plate. To accurately model this flow, the turbu-

lent length scale must also increase proportionately with



the boundary layer thickness. In MML, the outer length

scale, as given in equation (7) is equal to a constant

times the shear length scale, y*. The increase in y* with

x-distance is almost negligible, resulting in an essen-

tially constant value of the outer length scale for all

Reynolds numbers. Plots of gt' as shown in figure 8,
illustrate that the turbulent viscosity profiles calculated

with MML are nearly the same at all Reynolds numbers,

but the BLM I:tt profiles increase with increasing
Reynolds number. Though MML produced the correct
length scales for an airfoil near stall, 6 modifications arc

needed to make it applicable to general boundary layer
flows.

In order to make MML applicable over a range of

Reynolds numbers, the optimal saturation lengths, or C 1

values, were found at several Reynolds numbers. The

following simplified formulas were used to calculate the

inner and outer mixing lengths:

I "1I+ = g:y+ 1-e C z < y+ (9)

/+cap -- IcC 1, C I _ y+ (10)

Here, 1+ is the nondimensional form of the mixing

length, equivalent to l/y _, and the outer length scale,
-1- . . •

l cap, Is simply the tuner length scale evaluated at
y+ -- C t . From these results,/+cap was found as a

function of the skin friction, el, giving

/+cap = 1860- 6.20x 105of (11)

The velocity-defect profiles of figure 9 show that

equations (9) and (11) with l+ = rain (1+,/+cap), allow

the mixing length to grow proportionately with the

boundary layer thickness. The modified MML is better

than BLM at predicting the local skin friction coefficient,

of, as shown in figure 10; the wiggles at the upstream

boundary are a result of the imposed upstream boundary
condition.

Modifications for Adverse Pressure Gradient Flow_

Two equilibrium pressure gradient flows of

Bradshaw 15 were used to modify MML for adverse

pressure gradients effects. Equilibrium turbulent flows
are flows which have a constant value of Clauser's

equilibrium parameter, 21

(12)

In addition, they correspond to a power-law velocity

profile distribution, ue *, x', where the magnitude of the

exponent, a, indicates the strength of the pressure gradi-

ent. They also exhibit similarity when plotted in veloc-
ity-defect coordinates. Three flows were examined in

the experimental study of Bradshaw; 15 these were flows

with zero, mild, and strong adverse pressure gradients.

The corresponding values of the exponent, a, are 0,

-0.15, and -0.255, respectively; the corresponding values

of _ are 0, 1 and 5.
The modifications to the turbulence model are

based on the trends exhibited in the mixing length at the

three pressure gradients as shown in figure 11 taken from
Bradshaw) 5 Note that for all three pressure gradients,

the maximum mixing length is approximately 0.088, the

saturation distance from the wall is approximately 0.48,
and the slope of the curves near the wall increases with

the strength of the pressure gradient. These three
features were used to develop the following model:

°'(( y+<G l (13)

GI 4-

: = y >or (14)

A new parameter, G 3, has been introduced and the

constants C l and C2 in the original MML model have

been replaced by the functions Gl and G 2, where

G I _ 0.4G 4 (15)

G z = 5G3tc (16)

Here, G 4 is essentially a nondimensional boundary layer

thickness which is a function of[3 and of, and G 3 controls
the slope of the mixing length curve and is a function of

13. The following correlation was assumed for G4:

t34 = G 5 + G6c f

(17)

Separate values of the parameters G 3, G5, and G 6, corre-
sponding to each of the three pressure gradients, were

found and are given in table 1. This results in essentially

three separate models, one for each pressure gradient,

depending on the set of parameters used. The results of

4



these modifications are compared with Baldwin-Lomax

calculations in the velocity-defect plots of figures 12

through 14. (Note: The Baldwin-Lomax results for the

zero pressure gradient case are given in figure 7.) The
reference conditions used are the same as those given

earlier for the zero pressure gradient case. For the two

adverse pressure gradient cases, the turbulent velocity

profiles at the upstream boundary were computed using a

cubic spline fit of the Bradshaw experimental data and

held fixed; the appropriate pressure gradient was

imposed at the freestream boundary. Both cases were

computed using the grid of figure 5. but for the strong

pressure gradient case, the number of grid points in the
vertical direction was increased to 101.

Final Model

The final step in developing this turbulence
model was to combine all of the above modifications into

one general turbulence model. To accomplish this, the

following correlations were developed for the parame-

ters G 3, G 5 and G6:

G 3 = 1.0 13< 0.0 (18.a)

G 3 = 1.0+0.3071]-0.03911] 2 0.0<13<5.34 (18.b)

G 3 = 1.52 13>5.34 (18.c)

O 5 : 23, 300 1]< 0.0 (18.d)

G s = 23,300+856015-12301] 2 0.0<13<5.34 (18.e)

G 5 = 33,900 13> 5.34 (18.0

G6 = -7.75x106 13< 0.0 (18.g)

G6 = - 7.75x 106 - 4.51 × 1061] + 386, 000152

0.0 < 1]< 5.34
(18.h)

G 6 = -20,900 13> 5.34 (183)

The available experimental data are limited to only the

three values of 15which are in the range 0 < 1]< 5.34, and

the quadratic correlations of equations (18.b), (18.e) and
(18.h) are based on this limited data. For 15<0, the values

in (18.a), (18.d) and (18.g), were obtained by evaluating

the quadratic equations at 6=0. Similarly, for 13>5.34,
the values in (18.c), (18.f) and (18.i) were obtained by

evaluating the quadratic equations at 13=5.34.

Since 13,defined in equation (12), is a function of

the displacement thickness, 81 , a correlation was also

developed to avoid the problem of calculating 51 directly
and thus having to define the edge of the boundary layer.
This resulted in

_it = (G 7 +Gscf) y* (19)

The parameters G 7 and G 8 were defined in a manner

similar to G 3, G 5 and G 6 as given below.

G 7 = 2910 1]< 0 (20.a)

G 7= 29I0+ 27006 - 343152 0 < 13< 5.34 (20.b)

G 7 = 7560 _ :>5.34 (20.c)

G s = -96900 13< 0 (20.d)

G s = - 988,000 - 1.15 × 10615+ 89, 0001]2

0_< 13_5.34
(20.e)

G s = -4.57× 106 13> 5.34 (20.0

The value of 13used to define G 7 and G s is lagged in
time.

The final model with pressure gradient modifica-

tions, called MMLPG, was developed using the equilib-

rium turbulent flows of Bradshaw and is defined by

equations (13) through (20). The resulting velocity-

defect profiles for all three pressure gradient flows are

shown in figure 15 and exhibit good agreement with the

experimental data, with the exception of the strong
pressure gradient case. The calculations were performed

on a CRAY Y-MP computer and the computational times

are given in table 2. The strong pressure gradient case
took considerably longer to reach convergence because

the code had difficulties resolving oscillations induced at

the upstream boundary, which used a fixed velocity

profile for the inflow boundary condition.

Averaging for Multiple Boundaries

If both walls in a given coordinate direction are

solid surfaces, the turbulent mixing lengths are

computed separately at each surface and then averaged.

The Sajben diffuser, which is described in the next

section, has solid walls at the upper and lower vertical

boundaries, and is a typical example of a geometry

which would require averaging of the mixing length.

The averaging formula of Appendix A, equation (A. I0),

which was used to average the Fwake function in the

Baldwin-Lomax model, is also used here to average the

mixing length:



l, fl + hf2
l= _ (2D

fl+f2

If the lower and upper boundaries in the vertical direc-
tion, are solid surfaces, as in the Sajben diffuser, then Il

and 12are the mixing lengths at the lower and upper
boundaries, respectively. The functions fl and f2 are
defined in equation (A.11) of Appendix A.

Adverse Pressure Gradient Test Cases
To evaluate MMLPG for some typical propulsion

flows, a converging-diverging duct, referred to as the
Sajben diffuser, was used. This duct was designed to be
representative of the diffuser portion of the inlet for a
rocket/ramjet propulsion system. Detailed experimental
and computational data are available for flows with and
without external excitations. 22-27 This study, however,

dealt only with the unexcited flows. The geometry of the
diffuser is given in figure 16: the throat height, H, is 44
nun; the entrance-to-throat height ratio is 1.4, and the
exit-to-throat height ratio is 1.5. The grid, shown in

figure 17, is the same as that used by references 1 and 26,
and has 81 streamwise points and 51 vertical points. It
was packed in the vertical direction near the walls in
order to resolve the turbulent boundary layers and in the
streamwise direction near the throat to resolve the strong

gradients. The reliability of this grid is discussed in
Appendix B. Three transonic flow cases were run. The
flowfields were determined by setting R, the ratio of the
exit static pressure to the inlet total pressure. The first
case had a weak normal shock with R=0.82; the second

case had subsonic flow throughout (no shock) with
R--0.862, and the third case had a strong normal shock
with R=0.72. The reference velocity, temperature,

pressure and length used in Proteus were 4.72 riffs, 292
K, 135 kPa, and .044 m respectively. These values
match the values used in other numerical simulations of
this flow. l' 24. 26The initial conditions were zero velocity

and constant temperature and pressure everywhere in the
flow field. Both cases were run using MMLPG and the
Baldwin-Lomax model.

_W_cL,Skc;k_C__
The weak shock case was used as an example

case in the Proteus User's Manual, 1 and therefore was

run first in order to gain familiarity with running this

type of flow. It was computed as described in reference
1: First the exit pressure was gradually reduced to R =
0.1338 to establish supersonic flow throughout the
diffuser; then it was gradually raised to R = 0.82, the
desired ratio to establish the weak normal shock, and
iterated until the solution was no longer changing appre-

ciably with time. A plot of the static pressure on the top
wall at two locations, one upstream and one downstream
of the normal shock, as the solution progresses is shown

in figure 18. This indicates that pressure reaches a
steady state level, which, for practical engineering
purposes, can be considered a converged solution. A
closer examination of the results indicates that the
solution oscillates slightly about a mean steady level.

This may be caused by inherent unsteadiness in the flow;
Salmon et al. 22 mention that very low-amplitude, self-

sustaining oscillations were observed experimentally. It
is more likely, however, that the oscillations present in
this calculation are numerical in nature, which is
common for flows with shock waves. The oscillations

originating at the shock may not be damped out by the
artificial viscosity and therefore tend to migrate

upstream. The artificial viscosity used in Proteus to
calculate this flow was second- and fourth-order explicit,

both using the nonlinear coefficient model of Jameson et
al.; 28 the respective smoothing coefficients are *:2and
r,4, as given in Appendix B. For the entire calculation,
_c2 was set to 0.1; _ was set to .005 for the first 6000
iterations, while the exit pressure was changing, and
decreased to .0004 for the remaining 3000 iterations,
which were at a constant exit pressure. More details
about the effects of the artificial viscosity on this

solution are provided in Appendix B.
The static pressure distribution on the top and

bottom walls is given in figure 19. The shock location
on the upper wall and the shock Math number at the
edge of the upper wall boundary layer are given in table
3. Both MMLPG and BLM accurately predict the

pressure distribution on the wall and the location of the
shock. Each case was run for 9000 iterations and calcu-

lations made using MMLPG and BLM requirefl_
3.44x10 "5 sec/iteratlon/grid point and 3.36x10"_see/itera -

tion/grid point respectively on the CRAY Y-MP

computer.

No Shock Case
The second diffuser test case did not have a

normal shock wave. To compute this case, the exit

pressure was gradually lowered to R--0.862 then iterated
until the solution stopped changing. A steady state
solution was reached with subsonic flow throughout the
entire diffuser. The Proteus default artificial viscosity,
which uses the constant coefficient model of Steger 29

with both fourth-order explicit and second-order implicit

artificial viscosity, was used; the smoothing coefficients,

eE(4) and _! (defined in Appendix B), had values of 1.0
and 2.0, respectively.

6



The static pressure distribution on the top and
bottom wails is shown in figure 20 and indicates that
MMLPG is clearly better than BLM at predicting the
pressure distribution, though it still predicts a larger

pressure drop than that indicated by the experimental
data. The MMLPG results are similar to the calculations

of Hsieh et al25 who attributed the lower throat pressure

to the fact that the experiment was highly sensitive to
small perturbations in exit pressure. The maximum
Mach numbers in the diffuser are given in table 4.
Although no experimental data is available to compare
these values, the MMLPG results are in best agreement
with the calculations of Georgiadis 27 who used the
PARC Navier-Stokes code 30 for the same geometry. Of
the three diffuser test cases, this flow is most similar to

the benchmark cases used to derive MMLPG, although
its pressure gradients are stronger, and indicates that
MMLPG is capable of computing the flows for which it
was designed. Each case was run for 9000 iterations and
calculations using MMLPG and BLM required 3.45x 10.5
sec/iteration/grid point and 3.36xi 0.5 sec/iteration/grid
point, respectively, on the CRAY Y-MP computer.

Stron_ Shock Case
The final diffuser flow computed was the case

with a strong normal shock positioned in the throat. This
case was run in a manner similar to the weak shock case:

First the exit pressure was gradually lowered to
R--0.1338 to achieve supersonic flow throughout the
diffuser; then it was gradually raised to R--0.72 to estab-
lish the strong normal shock in the throat region, and
iterated there until the solution stopped changing appre-
ciably with time. Proteus was run in both steady and
unsteady modes to try to simulate the experimentally
observed self-excited oscillations of 217 Hz. 22 Unsteady

mode in Proteus is achieved by calculating a global time
step whereas steady mode uses a local time step to speed
up the computation. Neither calculation simulated the
experimentally observed oscillatory behavior, but
instead produced very small numerical oscillations in the
flow properties. (The artificial viscosity used for the
strong shock calculations was the same as that used for
the weak shock calculation.) Figure 21 shows the static
pressure on the top wall at the experimental shock
location and illustrates the behavior of these small oscil-

lations; the calculation shown was run in unsteady mode
with MMLPG.

The static pressure on the top and bottom walls
are presented in figure 22 and the shock location and

Much number at the edge of the top wall boundary layer
are given in table 5. Both MMLPG and BLM predicted
the shock location too far downstream. The experiment

predicted a region of separation on the top wall just
downstream of the shock with the flow re.attaching at x/
H--6.0. MMLPG predicted a very small region of
separation on the top wall which re.attached at x/H=3.6.
BLM predicted very small regions of separation on both
the top and bottom walls which reattached at x/H=3.g
and x/H=6.2. The separated behavior is illustrated in
figure 23, which gives the velocity profiles at four
locations downstream of the shock. These peculiar
results can be attributed to the fact that both MMLPG

and BLM compute very high values of_ due to the large
increase in vorticity downstream of the shock. The poor
performance of both models for this case can also be
attributed to the fact that all of the models are equilib-
rium turbulence being used to calculate a flow which is
clearly nonequilibrium. The inadequate performance of
MMLPG for the strong shock case is also explained by
the derivation of the model, which is based on experi-
mental data for beta values between 0 and 5, while this

flow encountered [3values as high as 12,000. Each case
was run for 10,000 iterations and the steady calculations

using MMLPG and BLM recjuired 3.54x10 -5 sec/itera-
tion/grid point and 3.82x10 "° sec/iteration/grid point,
respectively, on the CRAY Y-MP computer.

Summary and Conclusions

In the current work, the range of applicability
of the MML algebraic turbulence model was extended to
calculate more general boundary layer flows with zero
and adverse pressure gradients. To accomplish this
objective, MML was first modified to predict the appro-
priate boundary layer growth with increasing Rex by
incorporating a relationship for the mixing length as a
function of the local skin friction coefficient. Using the
experimental data of Bradshaw for zero, mild and strong
adverse pressure gradient flows, modifications were also
added to account for adverse pressure gradient effects.
The resulting generalized model, called MMLPG,
accurately predicted zero and adverse pressure gradient
flows over a plate and exhibited better agreement with
experimental data than the Baldwin-Lomax model.

To more thoroughly evaluate MMLPG for other
adverse pressure gradient flows, this model was also
used to calculate three transonic diffuser flow test cases:
flow with a weak shock, flow with no shock, and flow

with a strong shock. For the weak-shock case, MMLPG
and BLM did equally well in predicting the shock Much
number and location, and also in predicting the static

pressure distribution on the top and bottom diffuser
walls. For the no shock c.ase, MM].,PG was significantly
better than the Baldwin-Lomax model at predicting the
static pressures on the wails and at predicting the



maximumMach number in the duct. Both models inade-

quately predicted the strong shock flow, over-predicting
the shock Mach number and location and under predict-

ing the size of the separation on the top wall. In
addition, BLM predicted a small separation on the
bottom wall, although no separation was observed there

experimentally. This strong shock flow over-stepped the
bounds of the assumptions made in the development of
both of these equilibrium turbulence models.

Overall, the flat plate and transonic diffuser
results indicate that MMLPG is capable of accurately
predicting turbulent flows with and without adverse
pressure gradients. Future work should include contin-
ued validation of the model for these types of flows as

well as continued development of the model to better
account for stronger adverse pressure gradient flows both
with and without separation.

.
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Appendices

Appendix A: The Baldwin-Lomax Turbulence Model

A generalized version of the Baldwin-Lomax
algebraic turbulence model 4 is available in Proteus. 1
The turbulent shear and normal stresses and the turbulent

heat flux are modeled using the Boussinesq approach,

where the effective viscosity is defined as Ixett = Ix+ tit,
the second coefficient of viscosity is defined as

_'eff ----_ + _'t' and the effective thermal conductivity
ceeffieient is defined as keff = k+k t.

For wall bounded flows, the Baldwin-Lomax

model is a two-layer model:

(Pt) inner '

Ixt= {
(ixt)outer '

Y<Ycrossover

Y > Ycrossover

(A.I)

where Ycrossover is smallest value of y at which the inner

and outer region values of Ixt are equal. For free turbu-

lent flows, Ixt = (l'tt)outer"

1. Inner Region
The inner region turbulent viscosity is computed

from

(Ixt) inner _ P/21ml (A.2)

where I is the mixing length given by

I - ¢-Y_+I
l=lcy 1 (A.3)

The quantity [col is the magnitude of the total vorticity,
defined for two-dimensional planar flow as



(A.4)

2. Outer Region
In the outer region, the turbulent viscosity is

given by

(Pt)outer =KCcp pFKlebFwake (A.5)

where K is the Clauser constant, taken as 0.0168 and Ccp
is a constant taken as 1.6. The quantity Fwakeis
computed from

YmaxFmax for wall bounded flows

Fwake
2 Ymax

CwkVdiff Frna'-"_

(A.6)

for free turbulent flows

where the constant Cwk is 0.25 and

v if¢ : 191 a -191,.. (A.7)

where _' is the total velocity vector. The quantity Fma x

is the maximum value of

f//YI_ I - e-A-_

F (y) =

tyl(ol

for wall bounded flows

(,_s)

for free turbulent flows

and Ymaxis the value of y corresponding to Fmax. FKIcb
is the Klebanoff intermittency factor which accounts for
the experimentally observed phenomenon that as the free
stream is approached, the fraction of time the flow is
turbulent decreases. It is given by

FKleb r. II-5.5(CKIebY_ -'k Ym.x JJ
(A.9)

where CKleb is a constant taken as 0.3.

3. Multiple Boundaries
If both walls in a given coordinate direction are

solid surfaces, the turbulence model equations are
applied separately at each surface and then averaged.
The two outer regions overlap, and it assumed that the

two inner regions do not overlap. The averaging proce-
dure deals with the Fwake function. For example, in the

vertical direction, if the upper and lower boundaries are

both solid surfaces, the two values of Fwakeat a particu-
lar streamwise station are combined using the following
averaging formula:

(Fwake) lfl + (Fwtke) 2t"2

Fwake = fl + f2
(A.10)

The quantities (Fwake) I and (Fwake) 2 are the separate
values computed at the lower and upper boundaries
using equation (A.6). The functions fl and t'2are defined
by

fl =
kYl )

f2=ky 2 j

(A.I1)

The constant n is set equal to 2.0, Yl and Y2are the
normal distances to the bottom and top surfaces, respec-
tively, and D I and D2 are the normal distances from the
two surfaces to the location of [QIm,x. In addition, the y/

Ymaxvalue used in equation (A.9) for Floeb is computed
for both surfaces and the minimum value is used. These

values Of FKleb and Fwake are then used in equation (A.5)

to compute (pt) outer.

Ap__ndix B: Artificial Viscosity_and Grid Corkvergenee
High frequency nonlinear instabilities can appear

as the Proteus solution develops. For example, physical
phenomena, such as shock waves, can cause instabilities
when they are captured by the finite difference
algorithm. In addition, high Reynolds number flows
may have oscillations resulting from the odd-even
decoupling inherent in the use of central spatial differ-
encing of the convective terms. Artificial viscosity may
be used to suppress these oscillations. The two artificial
viscosity models in Proteus are the constant coefficient
model of Steger z9 and the nonlinear coefficient model of
Jameson et al.zs The implementation of these models in

generalized nonorthogonal coordinates was taken from
Pulliam. 31

1. Constant Coefficient Model
The constant coefficient model uses a combina-

tion of explicit and implicit smoothing. The standard
explicit artificial viscosity uses fourth-order differ-
ences. Second-order explicit artificial viscosity, which
provides more smoothing, is also available in Proteus,
however it is rarely used because it introduces a large

10



error. The implicit smoothing is second order and is

used to extend the linear stability bound of the fourth-

order explicit smoothing.

The explicit artificial viscosity is implemented in

the Proteus alternating direction implicit (ADD

algorithm 2 by adding the following terms to the right-

hand side source term for the first ADI sweep. (The

governing equations of Proteus are given in detail in

reference 1.)

C_2)A t

J (V_A_Q + V,fX,_Q) -

C_4)A t
j [ (V_A_)2Q+ (VqAq) 2Q]

03.1)

where _2) and ¢_4) are the second- and fourth-order

explicit artificial viscosity coefficients, _ and vl are the
computational coordinate directions, Q is the vector of

dependent variables and J is the Jacobian of the coordi-

nate transformation. The symbols V and A are the

standard backward and forward first difference opera-
tors.

The implicit artificial viscosity is implemented

by adding the following terms to the left-hand side of the

governing equation.

t
-7- Ev A¢¢JA 03.2a)

t
j ] 03.2b)

Equation (B.2a) is added for the first ADI sweep and

equation (B.2b) is added for the second ADI sweep. The

constant cu is the implicit artificial viscosity coefficient.

The optimum values of the coefficients ¢E(2), ere4)

and cu vary from problem to problem. They should be
small so as not to corrupt the physical solution, yet large

enough to damp any instabilities. The Proteus User's

Guide t recommends starting values of ¢_4) =1.0,

rE(2)=1.0 and c_=2.0.

2. Nonlinear Coefficient Model

The nonlinear coefficient artificial viscosity is

explicit and contains second and fourth-order differ-

ences. The following terms are added to the right-hand

side of the governing equations.

03.3)

The expression ¥ is given by

¥ = ¥, + yy ...... 03.4)

where ¥x and yy are spectral radii defined by

,I

YY = A'q

IVI +aA2+q 2
x y

(13.5)

The second- and fourth- order nonlinear artificial

viscosity coefficients are a function of the pressure field.

In the _ direction, they are given by

(g_2)) l = g2At max (¢_i + l' _i' Oi- I ) (B.6a)

(<"),= m"EO. 2'),1

where

Pi+l-2Pi+Pi-i[¢_i = _i+! +2Pi+Pi_ll
(B .7)

Similar formulas are used in the 11 direction.

The parameter a is a pressure gradient scaling

parameter which increases the amount of second-order

smoothing relative to fourth-order near shock waves.

The parameters g2 and r,4 are user-specified constants.
As with the constant coefficient model, the optimum

values of _:2 and r.4 are problem dependent. Typical

values range from r.4=0.005 and g2=0.01 for flows with

no shocks, to r,4=0.0004 and Ic2=0.1 for flows with
shocks. 1 Pulliam gives _:2=0.25 and g4=0.01 as typical

values for an Euler analysis. !' 31

3. Comments on Artificial Viscosity

As previously mentioned, artificial viscosity is

generally used to minimize oscillations which occur

when computing high Reynolds number flows and flows

with shock waves. The artificial viscosity coefficients

should be as small as possible so as not to corrupt the

solution, yet large enough to damp the nonphysical insta-

bilities. Optimum values of the artificial viscosity

11



coefficientsvaryfrom problem to problem; the coeffi-
cients used to calculate the flows presented herein were

selected based on values used for similar cases, as given
in the Proteus User's Manual. 1 Some representative test

cases were evaluated to insure that the chosen artificial

viscosity did not corrupt the physical characteristics of
the flow.

The fiat plate flows were run using the constant

coefficient model with eE(4)=l.0, eE(2)=0.0 and e i =2.0.

For these flows, it was possible to run Proteus with zero

artificial viscosity, however the solutions took two to

four times longer to converge. Upon close examination,

these solutions did not agree as closely with experimen-

tal data as the solutions computed using artificial viscos-

ity.
For the diffuser flows, the artificial viscosity

effects were examined for the weak shock case. As

mentioned earlier, the nonlinear coefficient model was

used. A value of !c2=0.1 was used for the entire calcula-

tion, with lc4=0.005 while the exit pressure was changing
(i.e, for the first 6000 iterations), and K4=0.0004 for the

remaining 3000 iterations, which were at a constant exit

pressure. It was not possible to compute this flow
without artificial viscosity, so the effect of doubling and

halving the smoothing coefficients was examined. The

static pressure distribution on the top and bottom walls

for this comparison (computed using MMLPG) is given

in figure 24. The solution computed using half of the
original artificial viscosity was nearly identical to the

original solution, indicating that the originally chosen

artificial viscosity is reasonable for this flow. Doubling

the artificial viscosity gave a less desirable result in that
the normal shock was smeared over a greater number of

grid points.

4. Grid Convergence
Grid convergence is an important factor in the

accuracy of a CFD calculation. The grids used to make

the flat plate and transonic diffuser calculations were
assessed to insure their grid independence. For the zero

pressure gradient flat plate calculations, a 101xl01 grid

was initially chosen. The size of this grid was systemat-

ically reduced in each direction in order to find the

coarsest grid that would give a solution which would not

change if additional grid points were added. The 51x51

grid shown in figure 5 was chosen based on this proce-
dure.

The grid used to make the transonic diffuser
calculations had been used previously by others, 1' 26 so it

is probable that this grid gives a reliable solution. As an
added check, the number of grid points in each direction

was doubled, and the resulting 162xi01 grid was used to

compute the no shock flow using MMLPG. A compari-

son of these results with the results obtained using the

81x51 grid of figure 17 is given in figure 25 and

indicates that the 8 lx51 grid is reliable.

Table 1. Parameters used in pressure gradient
modifications.

Pressure
Gradient
Strength 13 G 3 G 5

I[I

zero 0 1.00 23,300

mild 1 1.25 30,100

strong 5 1.53 33,800

06

-7.75x106

-l.16xl07

-2.09x107

Table 2. Computational times for flat plate flows.

(a) Zero Pressure Gradient

sec./iter./grid
Model Iterations point

im

BLM 2000 2.02xi0 "5

MMLPG 2000 2.00x10 -5

(b) Mild Pressure Gradient

sec./iter./grid
Model Iterations point

BLM 3000 2.14x 10 .5

MMLPG 3000 2.17z 10 .5

(c) Strong Pressure Gradient

sec./iter./grid
Model Iterations point

BLM 18,000 2.14x10 -5

MMLPG 10,000 1.96x10 .5

Table 3.

Turbulence
Model

MMLPG

BLM

shock case.

Shock Math
Number

1.233

Shock location and Mach number, weak

Shock Loca-
tion (x/H)

1.57

1.228

1.235Experiment 22

1.49

1.41

12



Table4. MaximumMachnumber,no
shock case

Turbulence Maximum
Model Math Number

MMLPG 0.881

BLM 0.976

Table 5. Shock location and Mach number, strong
shock case.

Turbulence Shock Mach Shock Loca-
Model Number tion (x/H)

MMLPG 1.626 3.13

BLM 1.665 2.90

Experiment 22 1.353 1.98

13



(a) Attached flow
Figure 1. Baldwin-Lomax F(y) profiles.

.I0 -

"t' <'-//
o_i IiS

W8 / . .=s

0 | | i I i ! i •
O hi O.2 C_ C,4 02 Ci 07 Ol OJ 1.0

y15 "°_i

Figure 2. Dimensionless mixing length distribution across Figure 3.

a turbulent boundary layer. Is
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Mixing length profile for MML model =

Uoo

Figure 4. Illustration of flow over a fiat plate. Figure 5. Computational grid for zero pressure gradient flat

plate case
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Figure 16. Illustration of the Sajben diffuser geometry.
Figure 17. Computational grid for the Sajben diffuser.
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